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SUMMARY 

Structural variants (SVs) have eluded easy detection and characterisation, particularly in non-

human species.  However, there is increasing evidence that SVs not only contribute a substantial 

proportion of genetic variation but have significant influence on phenotypes.  Here we present 

discovery of copy number variants (CNVs) (a subset of SVs) in a prominent New Zealand dairy 

bull using long read PacBio sequencing technology. Validation of CNVs was undertaken utilising 

whole genome Illumina sequencing of 557 cattle representing the wider New Zealand dairy cattle 
population. The ability to utilise CNVnator to “genotype” the 557 cattle for copy number across all 

regions identified as putative CNVs, allowed a genome-wide assessment of transmission level of 

copy number based on pedigree. The more highly transmissible a putative CNV region was 

observed to be, the more likely the distribution of copy number was multi-modal across the 557 

sequenced animals. This transmission based approach was able to confirm a subset of CNVs that 

segregates in the New Zealand dairy cattle population. Genome-wide identification and validation 

of CNVs is an important step towards their inclusion into genomic selection strategies. 

 

INTRODUCTION 

The introduction of genomic selection to dairy cattle breeding has increased the rate of genetic 

gain.  To date, genomic selection has largely focused on the utilisation of SNPs and very small 
insertions or deletions. Very little regard has been given to larger variations such as CNVs.  While 

SVs (including CNVs) account for the greatest amount of total polymorphic content among 

individual genomes (Weischenfeldt et al. 2013), the focus on SNPs and small indels is presumably 

due to the ease with which such variation can be genotyped at a minimal cost.  However, advances 

in genomic technologies are resulting in an increasing amount of evidence indicating that these 

larger sequence variations make important contributions to genetic and phenotypic variation 

(MacDonald et al. 2014, Zarrei et al. 2015, Sudmant et al. 2015, Weischenfeldt et al. 2013).  No 

single technology, detection strategy, or algorithm can capture the entire spectrum of SVs in the 

genome. The collective effort of the human 1000 Genomes Project has utilised both a variety of 

SV detection platforms and algorithms to generate an integrated map of 68,818 SVs in unrelated 

individuals (Sudmant et al. 2015). This is now considered the gold standard SV list in humans, yet 

the authors still state that “SV discovery remains a challenge nonetheless, and the full complexity 
and spectrum of SV is not yet understood” (Sudmant et al. 2015). 

 

The desire to have a comprehensive list of SVs in a population is not unique to human 

genomics, however, SV detection is critically dependent on the quality of genome assembly, 

which for species such as cattle, lags behind the quality of the human genome.  Furthermore, while 

SV/CNV detection algorithms invariably report the presence of large numbers of CNVs in each 

individual, these detection algorithms are plagued with a high rate of false discovery.  Without a 

gold standard with which to compare detected variants, case by case validation is a lengthy process 

and not suited for genome-wide analysis. 
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In animals such as cattle, a desire to understand the genome is driven by production traits and 

the desire to predict animal performance at an early age through genomic selection.  As 

widespread genotyping and imputation of genotypes to sequence level (Druet, Macleod, and Hayes 

2014) becomes more common, there is an increasing need to not only capture SNP variation, as 

CNVs may severely impact imputation (LIC unpublished data), and also be associated with, or 
contribute to important production trait phenotypes (Kadri et al. 2014, Xu et al. 2014). 

 

The recent availability of long read single molecule sequencing (up to 80 kilobases (kb)) 

provides a new technology for the identifications of CNVs.  This technology offers the possibility 

of single reads that span complex CNVs (Sedlazeck et al. 2015). We have utilised long read single 

molecule sequencing of a New Zealand Holstein Friesian bull with the vision of improving 

imputation and ultimately genomic selection and association studies. 

 

MATERIALS AND METHODS 

PacBio Sequence and SV Detection: PacBio long read sequences were generated from a Zealand 

Holstein-Friesian bull by Cold Spring Harbor Laboratories. The PacBio SMRT pipeline was 

used to generate filtered sub reads in fastq format. Alignment of reads to the UMD 3.1 bovine 
genome assembly was undertaken using BWA-MEM (v0.7.12; https://arxiv.org/abs/1303.3997) 

with options “–M –x pacbio”.  

SVs were called using Sniffles (v0.0.1 https://github.com/fritzsedlazeck/Sniffles). Structural 

variants displaying > 95% reciprocal overlap with a UMD3.1 contig were removed as these likely 

represent genome assembly errors. Further filtering retained only SVs present in a single contig. 

Illumina Sequence and CNV Genotyping: Illumina HiSeq sequencing of 557 animals 

representing the population structure of New Zealand dairy cattle and phenotypes of interest 

has previously been described (Littlejohn et al. 2016).  Read-depth-based CNV genotyping 

analysis was undertaken across the genome of animals sequenced on the Illumina HiSeq platform 

using CNVnator v0.3 (Abyzov et al. 2011) using a bin size of 150bp. Based on breakpoints 

identified by Sniffles, copy number was determined for each CNV greater than 100bp in length in 
each of 557 animals.  Mendelian inheritance of copy number was assessed using a mixed linear 

model.  The independent variables were the fixed effect of the mean and the random effect of the 

animal. The dependent variable was the copy number. The variance of the additive genetic effect 

of animal was based on a pedigree of each animal and their sire and dam, traced for seven 

generations.  ASREML-r (version 3.0) (Gilmour et al. 2009) was used for estimation of variance 

components. The variance associated with the animal effect is analogous to the additive genetic 

variance and heritability is additive genetic variation/phenotypic variation, however, in terms of 

CNV inheritance, “transmission level” is used instead of the term heritability. A transmission level 

of 0 indicates either a denovo mutation in Esteem, or a sequencing artefact, or alternatively a 

transmission level of 1 indicates that the copy number is inherited in a Mendelian fashion. 

Effect of CNVs on phasing allelic R2:Using sequence data from all 557 animals, phasing allelic 

R2 (AR2) was determined for, each SNP within the 936 CNV regions found to have high 
transmission levels, each SNP outside the CNVs, and each SNP 50, 100, 500, 1000, 3000bp either 

side of the CNVs. 

 

SNP tagging of CNVs: Correlations between copy numbers for each for the final 2661 CNVs and 

genotypes from 50K Illumina SNPchip or full sequence were determined. 

 

RESULTS AND DISCUSSION 

A total of 32x PacBio coverage of the bovine genome (UMD3.1) was generated. Sniffles 

software identified a total of 38,709 putative SVs of which 19,797 were CNVs (deletions 
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n=18,577, duplications n=1220). Of the 3532 CNVs (deletions n=3055, duplications n=477), that 

remained after filtering, sizes ranged from 1 – 79,450bp with a median size of 321bp (mean size of 

818bp).  CNVs smaller than 100bp (n=869) were excluded from further analysis as copy number 

could not be accurately predicted by CNVnator (2661 CNVs remained). 

 Using CNVnator in genotyping mode we were able to determine copy number at all putative 
CNV locations identified by PacBio sequence in all 556 animals. These CNV genotypes were used 

as ‘phenotypes’ in order to allow the copy number transmission level to be estimated using 

ASREML in an attempt to make a distinction between real CNVs and the many false positives 

detected when calling CNVs from short read sequencing. Putative CNVs showed a wide range of 

transmission levels. Approximately 30% of CNVs called from PacBio sequence showed high 

transmission level (936 CNVs > 0.70). Sorting CNVs by level of transmission and plotting 

distribution of copy number in the population indicated a trend of increasing multimodality of 

copy number with increasing transmission level.  Many of the CNVs with a calculated 

transmission level of greater than 0.6 showed a clear bi- or trimodal distribution of copy number 

across the 557 animals.  The multimodality of copy number, together with visual observation of 

bam files containing sequencing read-depths, insert size, and the presence of split reads are all 

consistent with the detection of bona fide CNVs, provided strong evidence that these highly 
tranmissible CNVs were likely to be present in 

our population. The observation that many  of 

these trimodal distributions represented 

deletions (0, 1, vs 2 copies) reflects, at least in 

part, the relative ease with which deletions are 

able to be detected relative to duplications, due 

to the large proportional differences in 

sequence content for deletions (Abyzov et al. 

2011). 

Figure 1 illustrates the detrimental effect of 

CNVs on the ability to correctly phase SNP 
genotypes, not only within the CNV itself, but 

also in the surrounding sequence.  Given the 

vast number of CNVs even in this one 

individual, it is expected that accuracy of 

imputation will be negatively affected by the inability to phase the reference sequence accurately.  

  While the data presented here is not a comprehensive list of CNVs in the New Zealand dairy 

cattle population, it does illustrate the potential of long read single molecule sequencing as an 

additional valuable source for identification of CNVs.  Furthermore, long read sequence 

information, combined with independent short read sequencing and pedigree information in 557 

animals representative of the population provide compelling evidence of the existence of CNVs in 

our dairy cattle population, and are not simply false positive results and allows us to begin a 

catalogue of CNVs. Characterisation of population CNVs has two major benefits to the cattle 
breeding industry.  Firstly, once identified, CNVs may be cheaply identified alongside SNPs by 

simply adding appropriately designed probes to existing SNP chip genotyping platforms and 

including CNV genotype information as an additional source of genetic variation in genomic 

prediction models. Secondly undertaking imputation in a CNV aware manner to bypass poor 

phasing and increase imputation accuracy.     

It could be argued that much of the CNV variation is already captured by SNP in linkage 

disequilibrium with CNVs. However, it is unlikely that multi-allelic CNVs would be accurately 

tagged using bi-allelic SNP, and initial reports indicate that around 20% of large CNVs identified 

from SNP chip platforms are not well tagged (Xu et al. 2014). Figure 2 illustrates the correlation 
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between CNV and SNP genotypes on the 50K 

SNPchip as well as from sequence. Our results 

indicate that very few of the 936 highly transmissible 

CNVs are tagged well by SNP on the 50K SNPchip, 

and unsurprisingly many more CNVs are well tagged 
by sequence derived SNPs.  Our current genomic 

selection protocols utilise only SNPs present on the 

50K SNPchip, and therefore, to date, only a very 

limited amount of genetic variation from CNVs is 

being captured and utilised.  As a move towards 

including sequence derived SNPs that tag CNVs 

could help in improving the accuracy of genomic 

selection 

From a practical perspective, the presence of 

CNVs may have implications for phasing and 

imputation of other classes of variants.  Given the 

increasing use of imputation of SNP chip genotypes to whole genome sequence, understanding 
where CNVs are located in the genome and ideally devising strategies for their correct imputation 

are of great importance for accurate genome-wide imputation and the generation of accurate 

genotype information to be utilised in genomic prediction models. 

 

CONCLUSION 

We present here the first step towards a gold standard list of CNVs in dairy cattle by utilising 

both long and short read sequencing technologies together with conservative filtering steps and an 

easy genome-wide strategy for assessing the Mendelian inheritance. Collectively this provided 

compelling evidence that these SVs do segregate in the population. Given the increasing use of 

imputation strategies being used in cattle breeding, identification and characterisation of CNVs 

(and all classes of SVs) will lead to improved imputation accuracy and will ultimately contribute 
to improved genomic prediction. 
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